RFM分析により膨大な会員の状況を可視化する~ツリーマップ使用~

【3つの指標をSCORE化し、オリジナルの観点で見える化を行えるようにしよう】

RFM分析*は昔からある分析手法ですが、Power BIを使用するとまた違った見せ方ができるようになります!

*R(Recency:最終購買日)、F(Frequency:購買頻度)、M(Monetary:累計購買金額)の3つの指標での分析

上のGIF画像では、Power BIの機能を活用してRFM分析にて行った内容を2つのストーリーで可視化できるようにしています

・金額ベース/Manetaryベースと会員数ベースの違い

・上記Manetaryの観点⇒RFMの観点

例えば、こちらのPower BI画面により金額と会員数ベースの違いが明確に分かります

*****Sponsered Link***** ************************

続いて2つのビジュアルの階層を1つ下げると、最終注文からかなり月数が経っている会員(R:長)が多いことに気づけます

上記はあくまで例ですが、RFM分析とPower BIを組み合わせることにより、膨大なデータから「新たな発見」ができるかもしれません

ポイント

まずは従来のRFM分析通りに、「R(Recency:最終購買日)、F(Frequency:購買頻度)、M(Monetary:累計購買金額)」の3つの観点でランク付けします

今回の記事では、3つの観点それぞれを1と2でランク付けします(後で変換します)

更に今回の記事ではそれぞれのランクを組み合わせてSCORE化します

SCOREテーブル

使用RAWデータ

使用するRAWデータは次の画像の注文データです

raw_data

1年内で1回しか注文しない会員もいれば、複数回注文する会員もいます

ランク付け

まず最初に行うのは、RFMそれぞれの観点でランク付けを行うメジャーを作成することです

ランク付けを行う前に、RFMそれぞれの観点で「値/VALUE」を抽出する必要があります

Recency

⇒R-RANK = SWITCH(TRUE(),’MEASURE’①[R-VALUE]>3,”2″,”1″)

こちらはSWITCH関数を使用します

第一引数をTRUEにすることで、複数の条件式を組み合わせて使用することができます

①DATEDIFF(‘MEASURE’②[dayMax_customer],”2023/03/31″,MONTH)

DATEDIFF関数を使用して、2つの日付の「差」を抽出します

②は会員毎の最終注文日を抽出するメジャーです

こちらは次のように記述します

dayMax_customer = MAXX(FILTER(‘raw_data’,’raw_data'[CustomerID]=’raw_data'[CustomerID]),’raw_data'[OrderDate])

FILTER関数でテーブルから該当会員を絞りこんだ後に、MAXX関数で注文日の最終日を抽出しています

Frequency

⇒F-RANK = SWITCH(TRUE(),’MEASURE’①[F-VALUE]=1,”2″,”1″)

こちらもSWITCH関数を使用します

①は会員毎の注文回数を抽出するメジャーです

F-VALUE = COUNTROWS(raw_data)

COUNTROWS関数で該当する行(該当会員)の数を抽出しています

Monetary

⇒M-RANK = SWITCH(TRUE(),’①MEASURE'[M-VALUE]<100000,”2″,”1″)

①は会員毎の合計金額を抽出するメジャーです

M-VALUE = SUM(‘raw_data'[SalesAmount])

SCORE化

前述の3つのメジャーを通じて、会員毎にそれぞれのランク付けを1と2で行います

更にその後、1と2の文字列を組み合わせてSCOREを作成します

そのためにはSUMMARIZE関数を使用し、会員毎にSCOREを含むテーブル/rfmTableを作成します

SUMMARIZE関数はピボットテーブルと同じように、集計しながらテーブルを作成してくれます

*注意:メジャーでも新しい列でもなく、新しいテーブルから作成します

文法としては次のように書きます

SUMMARIZE(集計の切り口(会員ID),作成する列名,集計式・・・)

*SUMMARIZECOLUMN関数と似ていますが別です

rfmTable = SUMMARIZE(‘raw_data’,raw_data[CustomerID],”R-RANK”,’MEASURE'[R-RANK],”F-RANK”,’MEASURE'[F-RANK],”M-RANK”,’MEASURE'[M-RANK],“SCORE”,’MEASURE'[R-RANK]&’MEASURE'[F-RANK]&’MEASURE'[M-RANK],”M-VALUE”,’MEASURE'[M-VALUE])

上記の”SCORE”列はランクを含む列を&で組み合わせて作成しています

rfmTableを作成したら「SCORE」テーブルとでリレーションを作成します

ツリーマップの作成

ツリーマップでは四角形の大きさで数字の大小を表示します

数字の大きいものが「右より左」「下より上」に並ぶのも特徴の一つです

今回のツリーマップでは階層を複数で作成するのがポイントです

これでツリーマップの階層をコントロールできるようになります

<まとめ>

今回はPower BIの機能を活用してRFM分析の見せ方を進化させる方法を解説しました

紹介した内容はあくまで、解説しやすくするためにかなり簡素化しました

例えば、ランクは1と2の2つで付けましたが3つや4つに増やした方が分かりやすいケースもあります

またSCORE化もSCORE自体に「超VIP」「ご無沙汰優良」などのネーミングを付けて定点観測するといいかもしれません

ぜひオリジナル方法を見つけて活用してみてください

にほんブログ村 資格ブログ ビジネススキルへ

にほんブログ村

にほんブログ村 IT技術ブログ VBAへ

*****Sponsered Link***** ************************

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です